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ABSTRACT: The apparent electrical conductivity has been an attribute widely used in 

studies of spatial variability, due to its high correlation with other soil attributes and because 

it is an attribute that represents the variability of an area in a quick, easy and low-cost way. 

The objective of this study was to evaluate the relationship between the spatial variability of 

apparent electrical conductivity with physicochemical attributes of an Eutrophic Red Oxisol 

located in Maracaju, state of Mato Grosso do Sul, Brazil, for determining specific soil 

management zones. We analyzed apparent electrical conductivity attributes (ECa 2, 7 and 15 

kHz), contents of potassium, cation exchange capacity, clay, base saturation and organic 

matter content. ECa was measured with the Profiler EMP-400 crossing the entire area in 0.45 

m spaced lines. Soil samples were collected in the 0.00–0.20 m layer, with a total of 216 

samples in an area of 70 ha. Statistical and geostatistical analyses were performed by SAS 

and GS+ software. The apparent electrical conductivity (ECa) was presented as an important 

tool to identify specific management zones showing data variability between low and medium 

zones. The attributes that had higher correlation with apparent electrical conductivity were 

potassium and clay. 

 

Key words: Geostatistics. Management zones. Precision agriculture. 

 

VARIABILIDADE ESPACIAL DA CONDUTIVIDADE ELÉTRICA APARENTE E 

DOS ATRIBUTOS FÍSICO-QUIMICOS DO SOLO 

 

RESUMO: A condutividade elétrica aparente tem sido um atributo amplamente utilizado em 

estudos de variabilidade espacial, devido a sua elevada correlação com outros atributos do 

solo e por ser um atributo que representa a variabilidade de uma área de forma rápida, fácil e 

com baixo custo. O objetivo deste estudo foi avaliar a relação entre a variabilidade espacial 

da condutividade elétrica aparente com atributos físicos e químicos de um Latossolo 

Vermelho eutrófico localizado em Maracaju-MS, para a determinação das zonas específicas 

de manejo do solo. Foram analisados os atributos condutividade elétrica aparente (CEa 2, 7 e 

15 kHz), teores de potássio, capacidade de troca catiônica, argila, saturação por bases e teor 

de matéria orgânica. A CEa foi medida com o Profiler EMP400 atravessando toda a área em 
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linhas espaçadas de 0,45 m. As amostras de solo foram coletadas na camada de 0,00-0,20 m, 

com um total de 216 amostras em uma área de 70 ha. A análise estatística e geoestatística 

foram realizadas por meio dos softwares SAS e GS+. A condutividade elétrica aparente (CEa) 

apresentou-se como uma importante ferramenta para identificar zonas específicas de manejo 

apresentando variabilidade dos dados entre baixa e média; os atributos que apresentaram 

maior correlação com a condutividade elétrica aparente foram o potássio e a argila. 

 

Palavras-chave: Geoestatística. Zonas de manejo. Agricultura de precisão. 

 

INTRODUCTION 

 

New technologies of direct or remote sensing of environmental factors have been 

developed for used in precision agriculture to manage production considering the spatial 

variability in productivity and the factors related to it, and among these are the sensors for 

monitoring physicochemical soil attributes, where it is possible to highlight those that monitor 

their apparent electrical conductivity (ECa). 

ECa has been widely used in studies on spatial variability due to its high correlation 

with other attributes of the soil and with the productivity of cultivated crops (LESCH et al., 

2005; SIQUEIRA et al., 2015), since it is directly related to the water content in the soil, 

texture, organic matter, pore size and distribution, salinity, capacity of cation exchange, base 

saturation and electrolyte concentration in soil solution (SIQUEIRA et al., 2015; BERNARDI 

et al., 2015). In addition to this direct relationship with these attributes, the ECa of the soil is 

characterized by being an attribute that represents the spatial variability of the area in a quick, 

easy and low-cost way (BOTTEGA et al., 2015). 

Soil fertility has been noted as the principal agent of spatial variability in productivity 

and chemical soil attributes (SOUSA et al., 2016) and base saturation has been one of the 

most used indicators to evaluate this fertility because it has the ability to interfere with the 

provision of various essential elements to plant development, in which the ions that consist 

the soil solution can be adsorbed to particles of clay and organic matter, absorbed by plants 

or leachate from surface layers via soil erosion (AQUINO et al., 2014; FRANCISCO et al., 

2015).  

In a study, Corassa et al. (2016) noted that the soil ECa is regulated by pH, the sum of 

the concentrations of ions and by soluble carbon where the increase in ECa occurs because of 

the decrease in the pH and the addition of soluble carbon + ion concentration. ECa is 

correlated with pH, V, Ca2+, Mg2+, Al3+ and saturation by Al3+, which can be used as a 

predictor of buffer effect of base saturation (V%) and the need for liming. Studying the 

correlation between ECa and spatial variability of soil attributes, Bottega et al. (2015) 

observed simple linear correlations between these parameters evaluated and positive 

correlations with chemical soil attributes. 
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To perform the quality evaluation of soil chemistry is necessary to collect a large 

number of soil samples, and geostatistics has been used to analyze and correlate all the data 

generated. Through it, we can investigate the magnitude of the correlation between the 

samples and their similarity with the distance, being that spatial dependence is analyzed by 

semi-variograms adjustments (SOUSA et al., 2016). When sampling points of an area are 

georeferenced, geostatistics provides obtainment of detailed spatial variability of its fertility 

from data processing and obtainment of maps (LAMPARELLI et al., 2001), with a larger of 

number of samples increasing the accuracy of results.  

According to Corá and Beraldo (2006), the generation of fertility maps can be made 

through the sampled points interpolation by kriging, which is based on spatial dependence 

expressed in the semi-variogram between neighbor sampling points to estimate values in any 

position inside the field, without trend and with minimum variance.  

Few studies have been conducted to evaluate the relationship of ECa with productivity, 

nutrient dynamics and physical attributes of the soil; however, knowing the dynamics of these 

relationships in soil solution became an important practice, since critical levels of nutrients 

are scarce in the literature. Thus, the objective of our study was to evaluate the relationship 

between spatial variability of apparent electrical conductivity and physicochemical attributes 

of an Eutrophic Red Oxisol located in Maracaju, state of Mato Grosso do Sul, Brazil, for 

determining specific soil management zones. 

 

MATERIAL AND METHODS 

 

The study was conducted in Fortaleza Farm, located in Maracaju-MS, Brazil, situated 

at 22° 01’ 44.39” S and 55o 17' 23.29” W and average altitude of 400 m in the agricultural 

year 2013/2014 in an area with approximately 20 years of use as pasture (Urochloa 

decumbens). After the collections of soil samples for chemical analysis, the pasture was 

managed for growing soybeans. 

The climate of the region, according to Koppen’s classification, is defined as Humid 

Mesothermal, Cwa type, with average annual temperatures and precipitation ranging from 20o 

to 24°C and 1,250 to 1,500 mm (PESQUEIRA et al., 2016). 

Soil was classified as Eutrophic Red Oxisol (EMBRAPA, 2013), clay texture, and 

slightly wavy relief.  

An regular sampling grid was georeferenced, with a GPS equipment containing 216 

points randomly distributed (Figure 1), aiming to cover the area of 70 ha of the parcel of land. 

A simple sample of soil in the 0.00-0.20 m layer soil with the aid of a Dutch Auger was 

collected at each sampling point. The soil was collected to determine contents of potassium 

(K), cation exchange capacity (CEC), base saturation (V), organic matter (OM) and 

determination of clay, according to Embrapa (2011) and Raij et al. (2001). 
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Figure 1. Sketch grid sampling. 

The apparent electrical conductivity (ECa) of the soil was measured in the frequencies 

of 2, 7 and 15 kHz through the equipment Profiler EMP-400 (GEOPHYSICAL SURVEY 

SYSTEMS, 2006) without direct contact with the soil, in the same sampling points where soil 

samples were collected. These frequencies were chosen because they represent the top, 

bottom and middle of the frequency range available for measurement. Measurements were 

carried out with a Profiler model that crossed the whole area in spaced lines of 0.45 m and 1.0 

m above the ground level on a PVC support, this being dragged by a quadricycle across the 

land. 

Electromagnetic induction is a non-invasive technique, which allows the determination 

of ECa by the transmission procedure of a magnetic field in the soil, where it is possible to 

send propagation current and consider only conduction currents. ECa measurement 

equipment by electromagnetic induction worked using lower frequencies (< 1 MHz). 

For each analyzed attribute, the classical descriptive analysis was carried out with the 

aid of statistical software SAS, where the mean, median, minimum and maximum values, 

standard deviation, coefficient of variation, asymmetry kurtosis and frequency distribution 

were calculated (SCHLOTZHAVER; LITTELL, 1997). 

The statistic of Shapiro e Wilk was used with 5% probability to test the hypothesis of 

normality. Correlation matrix was set, aiming to make the simple linear correlations for the 

combinations, two at a time, among all the attributes evaluated as well as introducing 

regression analyses for the pairs of greatest interest. Separately for each attribute, spatial 

dependence was analyzed by simple semi-variogram calculation, based on the stationary 

assumptions of the intrinsic hypothesis, by using the GS+ package (GAMMA DESIGN 

SOFTWARE, 2004). 
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Adjustments of simple semi-variograms, due to their models, were carried out primarily 

by the initial selection of: a) least mean square of deviations (LMSD); b) highest 

determination coefficient (r2); and c) greater spatial dependence estimator (SDE). The final 

decision of the model that represented the adjustment was performed by cross-validation, as 

well as for size definition of the neighborhood that provided the best kriging grid, performed 

by kriging. For each attribute, the nugget effect (Co), range (Ao) and sill (Co + C) were related. 

The spatial dependence estimator (SDE) analysis was performed according to the following 

expression (GAMMA DESIGN SOFTWARE, 2004): 

SDE = [C/(C + Co)] x 100                               (1) 

Where SDE is the spatial dependence estimator; C, the structural variance; and C+Co, 

the sill. 

The proposed interpretation to the SDE was the following: SDE ≤ 20% – spatial variable 

with very low dependence; 20% < SDE ≤ 40% – spatial variable with low dependence; 40% 

< SDE ≤ 60% – spatial variable with medium dependence; 60% < SDE ≤ 80% – spatial 

variable with high dependence; and 80% < SDE ≤ 100% –spatial variable with very high 

dependence (DALCHIAVON; CARVALHO, 2012). 

 

RESULTS AND DISCUSSION 

 

Analyzing the data listed on Table 1, we observe that average values found for 

potassium (K), cationic exchange capacity (CEC), clay content (CL), base saturation (V%) 

and organic matter (OM) showed average contents of 4.47 mmolc dm-3, 36.12 mmolc dm-3, 

664.87 g kg-1, 59.49% and 29.37 g dm-3, respectively. These values indicate that this soil 

presents average levels of fertility, according to Raij (2001), and also that these pasture lands 

are being well managed, since in areas under pasture of Urochloa decumbens it is common to 

find acidic and poor in fertility soils. 

According to Aquino et al. (2014), in well managed pastures, it is common to find high 

values of K, CEC and V% in the topsoil, because losses of cations in these areas are minimized 

due to prevention and control of erosion processes, which related to the correction of soil 

acidity and nutrient replenishment via fertilizing maintain soil fertility at adequate levels. 

Caetano et al. (2013), when studying the chemical properties of an Oxisol Red under different 

use and management systems, observed in those areas, where there was no proper 

management of pasture, that the soil was poor in fertility, in acids, and feature low CEC and 

V%. 

Results of CL and OM corroborate those found by Tavares Filho et al. (2012), who 

assessed an Eutrophic Red Oxisol in the 0.00-0.20 m layer and found 650 clay contents of 

650 g kg-1 and OM of 23.89 g dm-3, demonstrating that there is no variation in both soils 

evaluated regarding contents of organic matter and clay. 
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Table 1. Descriptive analysis of apparent electrical conductivity and physicochemical 

attributes of the soil collected at a depth of 0.00-0.20 m. 

Attributes 
Descriptive statistics measures 

Value Coefficient Probability 

test Mean Median Minimum Maximum SD Variation Kurtosis Asymmetry Pr<w FD 

 ....................dS m-1............................ %     

ECa 2kHz - 55.06 54.06 - 75.78 - 39.55 8.10 - 14.4 - 0.568 - 0.314 0.0042 IN 

ECa 7kHz - 13.84 - 13.82 - 18.86  - 8.09 2.34 - 17.2 - 0.722 - 0.046 0.0461 TN 

ECa 15 

kHz 

- 7.59 - 7.67  - 9.88 - 4.55 1,22 - 16.1 - 0.710 0.223 0.0057 IN 

 .....................mmolc dm-3..............      

K 4.47 4.41 3.51 5.42 0.30 6.7 2.315 0.335 0.0001 IN 

CEC 36.12 36.07 29.52 45.00 3.01 8.3 0.365 0.132 0.0360 TN 

 ........................g kg-1............................      

CL 664.87 668.25 580.02 731.29 34.29 5.1 -0.109 0.291 0.0004 IN 

 ................................%.........................      

V 56.49 56.51 48.43 67.21 3.77 6.7 0.268 0.320 0.0129 IN 

 .........................g dm-3.........................      

OM 29.37 29.53 22.90 38.97 3.47 11.8 −0.383 0.316 0.0048 IN 

ECa = apparent electrical conductivity, K = Potassium, CEC = cation exchange capacity, CL = Clay, V = base 

saturation, OM = organic matter content, SD = standard deviation, FD = frequency distribution,  IN = 

indetermined, TN = tending to normal. 

According to the classification of the coefficient of variation proposed by Pimentel-

Gomes and Garcia (2002), the variability of an attribute can be classified according to the 

magnitude of its coefficient of variation. The apparent electrical conductivity (ECa) of 2, 7 

and 15 kHz presented values of -55.06, -13.84 and 7.59 dS m-1, with coefficient of variation 

-14.4, -17.2 and -16.1%, standard deviation (SD) of 8.10, 2.34 and 1.22 dS m-1, respectively 

(Table 1). The coefficient of variation data, associated with SD and ECa, showed the 

magnitude of variability of the properties analyzed due to the high variation that occurred. 

Values of K, CEC, CL and V% presented lower variability with coefficient of variation 

between 5.1 and 8.3%. Carvalho et al. (2013), when studying the variability of physical 

attributes of an Oxisol found average variability of 17.4% for clay content, disagreeing with 

the data found in this study. 

The OM content presented average variability with coefficient of variation of 11.8% 

(Table 1). Marques Junior et al. (2008), when studying an Oxisol Red, also found average 

variability of 12.9% for the OM. The coefficient of variation must be used as a parameter to 

validate the average values found, since according to Pimentel-Gomes and Garcia (2002), 

when coefficient of variation is greater than 30%, the average has little significance because 

it reflects that the data series is very heterogeneous, annulling the average reliability. 

However, if it is less than 20%, data are homogeneous and average has significance and can 

be used as representative for the data obtained. 

When any statistical variable has frequency distribution of normal type, the measure of 

central tendency most suited to represent it should be the average. On the other hand, it will 
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be by the median if there is distribution of frequencies of the indeterminate type and tending 

to normal (DALCHIAVON et al., 2011). For ECa of 2 and 15 kHz, presented frequency 

distribution of indetermined type, and for ECa of 7 kHz, presented frequency distribution 

tending to normal with negative asymmetry coefficients of -0.314 and positive of 0.046 and 

0.223, respectively (Table 1). Kurtosis coefficients were negative (-0.568, -0.722 and −0.710, 

respectively) and 5% of probability was not significant by the normality test, since its 

probability ranged from 0.0057 to 0.0461. 

The attributes K, CL, V and OM presented frequency distribution of indetermined type 

with asymmetry coefficients between 0.132 and 0.335, and kurtosis between -0.383 and 

0.365, not being significant at 5% of probability by the normality test, since it ranged between 

0.0001 and 0.0360, respectively (Table 1). Thus, the central tendency of measures of all 

attributes evaluated will be the median. Therefore, indeterminate frequency distributions, as 

well as the magnitude of the kurtosis and asymmetry coefficients, were in accordance with 

the results obtained by Dalchiavon et al. (2011) and Machado et al. (2015), who verified 

distribution frequency of indetermined type for all evaluated attributes. 

The positive asymmetry values demonstrated that there is a concentration trend of 

values below the average observed, and this trend is more expressive the higher the value 

obtained. The reverse situation occurs for negative values of this coefficient (Table 1). Except 

the CL and OM that presented platykurtic frequency distribution, i.e., negative kurtosis, the 

remaining attributes of the soil had leptokurtic frequency distribution, showing that most of 

the soil attributes have the data near the center in their frequency distribution chart. This may 

indicate that measures of central tendency are not dominated by atypical values in the 

distribution. It was also observed that, except CL, all attributes evaluated showed similar 

mean and median values, and according to Bottega et al. (2015), this indicates that data tend 

to a symmetrical distribution. 

Table 2. Array of linear correlation between apparent electrical conductivity and 

physicochemical attributes of the soil collected at a depth of 0.00-0.20 m. 

Attributes 
Correlation coefficient 

2 kHz 7 kHz 15 kHz K CEC CL V% 

ECa 7 kHz 0.719 ** - - - - - - 

ECa 15 kHz 0.305 * 0.617 ** - - - - - 

K - 0.369 * 0.014 0.031 - - - - 

CEC - 0.154 - 0.032 0.121 0.283* - - - 

CL 0.378 * 0.281* - 0.006 - 0.144 - 0.677* - - 

V 0.013 0.093 0.096 0.341* 0.912** - 0.455* - 

OM - 0.209* - 0.137 0.096 0.115 0.165 - 0.232* - 0.029 
ECa = apparent electrical conductivity, K = potassium, CEC = cation exchange capacity, CL = clay, V = base 

saturation, OM = organic matter content. *Significant at 5%, ** Significant at 1%. 

Correlations between ECa and soil attributes were significant for 2 kHz x CL (r = 

0.378*), 2 kHz x OM (r = -0.209*) and 7 kHz x CL (r = 0.281*). This significance showed 

that apparent electrical conductivity is correlated with clay content and organic matter of the 
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soil (Table 2). For Kilic et al. (2012), soils with higher clay content conduct more electricity 

compared with those of sandy texture due to the fact that ions present in the diffuse double-

layer of clay particles are able to conduct greater electrical current even when the soils present 

low contents of water, whereas sand practically does not have this feature. 

For the 2 kHz x K correlations and 2 kHz x OM, there were inverse correlation (Table 

2). This inverse correlation indicated that, with the decrease of K and OM in the soil, the 

frequency of ECa increased. For 2 kHz x CL and 7 kHz x CL there was direct correlation, i.e., 

with increase in the ECa frequency, there was a significant increase of clay content in the soil 

studied. According to Machado et al. (2006), the direct and positive correlation occurs due to 

greater presence of ions in clay particles that are able to conduct increased electricity, even 

though this soil showed low contents of water, whereas sand practically does not have this 

feature, thus the results of ECa in clay soils are generally higher than on sandy soils. These 

results differed from the ones found by Machado et al. (2015), with a direct correlation for 2 

kHz x CEC (r = 0.561**), 2 kHz x OM (r = 0.172**) and 7 kHz x OM (r = 0.241**) 

correlations. 

    

    

 

Figure 2. Regression equations between apparent electrical conductivity and 

physicochemical attributes of the soil collected in the depths of 0.00-0.20 m. 
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Figure 2 shows regression equations between the attributes ECa (2 and 7 kHz) and 

CEC, CL and OM. For Hopkins (2014), correlation coefficients lower than 0.5 indicate weak 

correlation, and above this value they are considered strong correlation. Thus, all figures 

present weak correlation, although significant, with correlation coefficient lower than 0.357. 

Geostatistical analysis showed that, for most of the attributes studied, there was spatial 

dependence for the data, except for clay, OM and V, being that, ECa 2 kHz was adjusted to 

the spherical model, ECa 7 and 15 kHz, exponential model and soil attributes, to the gaussian 

model (Table 3 and Figure 3). 

Table 3. Parameters of semi-variograms and cross-validations for apparent electric 

conductivity and physicochemical attributes of the soil collected at a depth of 0.00-0.20 m. 

Attributes 

Parameters 

Model 
Nugget 

effect 
Sill Range r2 SSR SDE Cross-validation 

  C0 C0 + C A0 (m)   % Class a b r 

ECa 2 Sph 35.50 83.820 1032 0.938 1.42 57.9 HI 2.14 1.039 0.557 

ECa 7 Exp 3.00 6.844 885 0.745 3.59 56.2 VH 1.39 1.102 0.607 

ECa 15 Exp 0.684 1.619 396 0.832 0.038 57.8 HI 0.61 1.079 0.533 

K Gau 0.008 0.115 190.5 0.974 20.10-4 93.0 VH 0.12 0.972 0.919 

CEC Gau 0.010 8.187 247.7 0.974 2.12 99.9 VH - 0.04 1.001 0.998 

CL Pne 1200 1200 - - - - - - - - 

V Pne 14.06 14.06 - - - - - - - - 

OM Pne 12.25 12.25 - - - - - - - - 

ECa = apparent electrical conductivity (kHz), K = Potassium, CEC = cation exchange capacity, CL = Clay, V% 

= base saturation, OM = organic matter content, Sph = Spherical, Exp = Exponential, Gau = Gaussian, Pne = 

Pure nugget effect, SSR = sum of squares of residues, SDE = spatial dependence estimator (HI = high and VH 

= very high). 

Dalchiavon et al. (2011), studying a Oxisol Red dystrophic under direct seeding system, 

on a grid with 75 sampling points with spacing between points of 10 m x 10 m, totaling 7,500 

m2, found a Gaussian model modeling the chemical soil attributes. According to Dalchiavon 

et al. (2012), the lack of spatial independence for the attributes evaluated in the study means 

that the behavior of these regionalized attributes was not random and that the distances 

between points collected and used in the geostatistical gridding were enough for the study of 

spatial variability. 

The performance of semi-variograms (Table 3), considering values of the determination 

coefficient (r2), had the following descending relation: K (0.974), CEC (0.974), ECa 2 kHz 

(0.938), ECa 15 kHz (0.832) and ECa 7 kHz (0.745). Thus, in the relation among the first 

three attributes (K, CEC and ECa 2 kHz) that had high determination coefficients, the 

following was observed: CEC seemed to be the attribute of best semivariographic adjustment 

with SDE of 99.9%, considered as very high, range of 247.7 m and is also the attribute that is 

best adjusted among the models presented.  
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We observed that all attributes analyzed were adjusted to some semi-variogram model, 

and there was no pure nugget effect to any of the attributes analyzed, indicating random 

distribution in the study zone and spatial independence (CRUZ et al., 2010). The highest 

determination coefficient (r2) for the ECa went to the ECa 2 kHz with SDE of 57.9%, 

considered high, and range of 1,032 m. These results differed from the ones found by 

Machado et al. (2015). They found better performance of semi-variograms for the attributes 

ECa 2 kHz and ECa 7 kHz; however, SDE was similar and very high for most attributes. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 3. Maps of kriging and semivariograms of apparent electric conductivity and 

physicochemical attributes of the soil. 

a) 

b) 

e) 

d) 

c) 
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The decreasing relation of ranges was the following: ECa 2 kHz (1,032 m), ECa 7 kHz 

(885 m) and ECa 15 kHz (396 m) (Table 3 and Figures 3a, b and c). Determining the semi-

variogram range allowed inferring about the maximum distance of homogeneity of the 

evaluated attributes, which were represented in relation to neighboring samples. These results 

lead to the suggestion of Dalchiavon et al. (2011). According to the aforementioned study, 

geostatistical gridding and distance between points like these should be used to aid future 

studies. The values of ranges to be used in geostatistical packages, which will feed the 

computational packages used in precision agriculture, should be generally between 247.7 and 

1,032 m, for representing the distance within which the values of a certain attribute are equal 

to each other. The range of these attributes ensures that all points in an area with this radius 

and the same soil are very similar, in such a way to be used to estimate values for any point 

between them (MACHADO et al., 2006). 

In the initial comparison of maps of kriging (Figure 3), in which the management zones 

based on EC and soil attributes are presented, it is possible to notice spatial resemblance 

between ECa 2 kHz and ECa 7 kHz. Thus, in Figures 3a and 3b in the east-central region of 

the map are the lowest ECa values. While the western regions of the 2, 7 and 15 kHz ECa 

maps (Figures 1a, b, c) showed the highest ECa values. In the same region are the average 

contents of K (3.19-3.75 mmolc dm-3) and CTC (30-33 mmolc dm-3). However, it is observed 

that ECa 2 and 7 kHz are very irregular, that is, with small management zones, which 

according to Alves et al. (2013), small management zones are impossible to be managed due 

to technical and economic limitations. 

 

CONCLUSION 

 

The apparent electrical conductivity (ECa) was presented as an important tool to 

identify specific management zones showing data variability between low and medium. 

Attributes that had higher correlation with apparent electrical conductivity were 

potassium and clay 
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